ECS455 Chapter 3 Call Blocking Probability

Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:
BKD 3601-7
Tuesday 9:30-10:30
Tuesday 13:30-14:30
Thursday 13:30-14:30

Introduction

- The English dictionary word with the most consecutive vowels (six) is EUOUAE.
- It is also the longest English word consisting only of vowels

- Imagine a word with five consecutive vowels.

Introduction

- Words with five consecutive vowels include AIEEE, COOEEING, MIAOUED, ZAOUIA, JUSSIEUEAN, ZOOEAE, ZOAEAE.

Introduction

- Words with five consecutive vowels include AIEEE, COOEEING, MIAOUED, ZAOUIA, JUSSIEUEAN, ZOOEAE, ZOAEAE.

- Our new topic: QUEUEING THEORY.
- This is the only common word in the English language with five consecutive vowels.
- Note:The longest common word without any of the five vowels is RHYTHMS.
- There are longer rare words: SYMPHYSY, NYMPHLY, GYPSYRY, GYPSYFY, and TWYNDYLLYNGS. WPPWRMWSTE and GLYCYRRHIZIN are long words with very few vowels.

That Second "e"...

- You may recall the rule for changing a verb into its "-ing" form from your English class...
- If the verb ends in an "e" we remove the "e" and add "-ing":
- browsing, causing, changing, charging, choosing, giving, having, hiring

Queueing Theory

"queueing theory"

เว็บ วิดีโอ ค้นรูป หนังสือ ข่าวสาร
"queuing theory"

เว็บ วิดีโอ ค้นรูป หนังสือ แผนที่ ।

ผลการค้นหาประมาณ 332,000 รายการ (0.25 วินาที)

WikipediA

The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article

Article Talk

Queueing theory

From Wikipedia, the free encyclopedia

Queueing theory is the mathematical stl

Queving Theory

Explore queuing theory for scheduling, resource allocation, and traffic flow applications
Queuing theory is the mathematical study of waiting lines or queues. This approach is applied to different types of problems, such as scheduling, resource allocation, and traffic flow. It is often applied in:

- Operations research
- Industrial engineering
- Network design
- Computer architecture

Limiting distribution

```
>> P = [2/5 3/5; 1/2 1/2]
P =
    0.4000 0.6000
    0.5000 0.5000
>> n1 = [llle5] n (1) >> n1 = [1e4 年年4]
n1 = n1 =
```



```
    5 4 9 0 0
>>n4=n3*P
    45500 54500 45490
    >> n5 = n4*P
>> n5 =n4*P}\mp@subsup{n}{}{(5)}=\mp@subsup{n}{}{(1)}\mp@subsup{p}{}{4}\quad>>nn
    45450 54550 45451 54549
>>n6=n5*P n(6) = n (1) p 年 ll l> n6 = n5*P
    45455 54545 1.0e+04 *
    4.5455 5.4545
```


Limiting distribution

Limiting distribution

```
>> P = [2/5 3/5; 1/2 1/2]
P =
\begin{tabular}{ll}
0.4000 & 0.6000 \\
0.5000 & 0.5000
\end{tabular}
>> n1 = [0 1e5]
n1 =
0 100000
>> n2 = n1*P
n2 =
    50000 50000
>> n3 = n2*P
n3 =
    45000
                            5 5 0 0 0
>> n4 = n3*P
n4 =
    45500
    5 4 5 0 0
>> n5 = n4*P
n5 =
    4 5 4 5 0
    5 4 5 5 0
>> n6 = n5*P
n6 =
    4 5 4 5 5
    54545
```

```
>> P = [2/5 3/5; 1/2 1/2]
P =
0.4000 0.6000
    0.5000 0.5000
>> P^2
ans =
    0.4600 0.5400
    0.4500 0.5500
>> P^3
ans =
    0.4540 0.5460
    0.4550 0.5450
>> P^4
ans =
            0.4546 0.5454
            0.4545 0.5455
>> P^5
ans =
    0.4545 0.5455
    0.4546 0.5455
>> P^6
ans =
\begin{tabular}{ll}
0.4545 & 0.5455 \\
0.4545 & 0.5455
\end{tabular}
    0.4545 0.5455
```


Limiting distribution

	$\mathbf{n}_{A}=\#$ trials in state A	$\mathbf{n}_{\mathbf{B}}=\#$ trials in state B
Time Slot 1	0	100,000
Time Slot 2	50,000	50,000
Time Slot 3	45,000	55,000
Time Slot 4	45,500	54,500
Time Slot 5	45,450	54,550
Time Slot 6	45,455	54,545

$\times \frac{1}{100,000}$		
	$\mathrm{p}_{\mathrm{A}}=$ proportion of trials in state A	$\mathrm{p}_{\mathbf{B}}=$ proportion of trials in state \mathbf{B}
Time Slot 1	0	1
Time Slot 2	0.5	0.5
Time Slot 3	0.45000	0.55000
Time Slot 4	0.45500	0.54500
Time Slot 5	0.45450	0.54550
Time Slot 6	0.45455	0.54545

 Limiting distribution $P^{3}=v D^{2} 8^{\prime} x^{\prime} x V^{-1}=v D^{2} v^{-1}$

- Start with $P=\left[\begin{array}{ll}2 / 5 & 3 / 5 \\ 1 / 2 & 1 / 2\end{array}\right]$
- Want to find $\lim _{n \rightarrow \infty} \mathrm{P}^{n}$.
- To do this, we first decompose \mathbf{P} into $\mathrm{P}=\mathrm{VDV}^{-1}$.
- In MATLAB, $[V, D]=\operatorname{eig}(P)$ produces a diagonal matrix D of eigenvalues and a matrix V whose columns are the corresponding eigenvectors.
- Finally,

```
>> P = sym([2/5 3/5; 1/2 1/2])
\[
\mathrm{P}=
\]
\[
\begin{array}{ll}
\mathrm{P}= \\
{[2 / 5,3 / 5]} \\
{[1 / 2,} & 1 / 2]
\end{array} \quad P^{n}=V D^{n} V^{-1}
\]
\[
\gg[\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{P})
\]
\[
\mathrm{V}=
\]
\[
[-6 / 5,1] \mid
\]
\[
\left[\begin{array}{lll}
{[ } & 1, & 1]
\end{array}\right.
\]
\[
D=
\]
\[
\left[\begin{array}{rr}
{[-1 / 10,} & 0] \\
{[ } & 0,
\end{array}\right] \quad \square \lim _{n \rightarrow \infty} \mathrm{D}^{n}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
\]
\[
\gg V^{*} D^{*}\left(\mathrm{~V}^{\wedge}(-1)\right) \quad \gg \operatorname{Dinf}=\operatorname{sym}([0,0 ; 0,1])
\]
\[
\text { ans }=\quad \text { Dinf }=
\]
\[
[2 / 5,3 / 5] \quad[0,0]
\]
\[
[1 / 2,1 / 2] \quad[0,1]
\]
\[
\gg V^{*} \operatorname{Dinf} *\left(V^{\wedge}(-1)\right)
\]
\[
\text { ans }=
\]
\[
[5 / 11,6 / 11]
\]
\[
[5 / 11,6 / 11]
\]
```

$$
\lim _{n \rightarrow \infty} \mathrm{P}^{n}=\lim _{n \rightarrow \infty}\left(\mathrm{VDV}^{-1}\right)^{n}=\lim _{n \rightarrow \infty} \mathrm{VD}^{n} \mathrm{~V}^{-1}=\mathrm{V}\left(\lim _{n \rightarrow \infty} \mathrm{D}^{n}\right) \mathrm{V}^{-1}
$$

Review: Discrete-Time Markov Chain

- We model the evolution in time of K by Markov chain.
- $K(t)=$ the number of channels being occupied at time t
- Time is divided into small slots so that our analysis can be done in discrete time.
- This only approximate the solution. However, the answers will be accurate in the limit that the slot size δ approaches 0 .
- Discrete-time Markov chain can be specified via its state transition diagram or its probability transition matrix P.

$$
p=\frac{0}{\left[\begin{array}{cc}
0 \rightarrow 0 & 0 \rightarrow 1 \\
1-\lambda \delta & \lambda \delta \\
1 \rightarrow 0 & 1 \rightarrow 1
\end{array}\right]}
$$

Simulating a Markov Chain in MATLAB

```
function X = MarkovChainGS(n,S,P,X1)
% n = the number of slots to be considered
% S = a row vector containing possible states (usually 1:N)
% P = transition probability matrix
% X1 = initial state for slot 1
N = length(S); % Number of possible states
T = zeros(1,n); % Preallocation
T(1) = find(S==X1); % Express the states using indices from 1 to N
    % instead of the provided support S
for k = 2:n
    T(k) = randsrc(1,1,[S;P(T(k-1),:)]);
end
X = S(T); % Express the states using the provided support
end
```


Simulating a Markov Chain in MATLAB

Simulating a Markov Chain in MATLAB

Exercises
>> MarkovChain_Demo1
X =
$\begin{array}{cccccccccc}2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 1\end{array}$

Thare are 5 transitiuns from state 1

$$
\begin{array}{ll}
\text { p_sim }= & \\
0.6 & 0.4
\end{array}
$$

>> MarkovChain_Demo1

$$
x=
$$

Simulating a Markov Chain in MATLAB

$$
\begin{array}{lr}
\text { >> MarkovChain_Demo2 } \\
\text { P_sim = } \\
0.4007 & 0.5993 \\
0.5055 & 0.4945
\end{array}
$$

p_sim =

$$
0.4575
$$

$$
0.5425
$$

\approx steady - state probabilities

Review: Steady-State Probabilities

- Long-term behavior of a discrete-time Markov chain can be studied in terms of its steady-state (or limiting or equilibrium) probabilities.
- To find these probabilities, we use balance equations together with the fact that
- To write down a balance equation,
- first define a boundary,
- then consider the transfer of probabilities "in" and "out" of the boundary.
- To be at equilibrium, there should not be any net transfer.

Example $P=\begin{aligned} & 1 \\ & 3\end{aligned}\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 2 / 3 & 1 / 3 \\ 1 / 2 & 1 / 2 & 0,\end{array}\right]$

$$
P_{1} \times 1+p_{3} \times \frac{1}{2}=P_{2} \times \frac{1}{3}
$$

$$
\frac{2}{3}
$$

$$
\frac{1}{2} P_{3}+\frac{1}{2} P_{3}=\frac{1}{3} P_{2}
$$

$$
p_{3}=\frac{1}{3} p_{2}^{3}
$$

$p_{1} \times 1=\frac{1}{2} P_{3} \quad P_{1}+P_{2}+P_{3}=1$

$$
p_{1}+6 p_{1}+2 P_{1}=1
$$

$$
p_{1}=1 / 9
$$

(19) $\quad p_{3}=2 p_{1}=2 / 9 \quad p_{2}=6 p_{1}=6 / 9=2 / 3$

Exercise

$$
\begin{aligned}
& P_{1}=\frac{3}{4} P_{2} \\
& \frac{1}{4} P_{1}+\frac{1}{4} P_{1}+\frac{1}{2} P_{1}=\frac{3}{4} P_{2}
\end{aligned}
$$

Review: Problem Solving

- For any question that requires you to get your answers (call blocking probability or steady-state probabilities) "from the Markov chain" or "via the Markov chain", make sure that you
- draw the Markov chain
- set up the boundaries and write down the corresponding balance equations

Review: Two Interpretations

- Two Interpretations of steady-state probabilities: When we let a system governed by a Markov chain evolve for a long time
- at a particular slot, the probability that we will find the system in a particular state can be approximated by its corresponding steady-state probability,
- considering the whole evolution up to a particular time, the proportion of time that the system is in a particular state can be approximated by its corresponding steady-state probability.

Example

```
n = 1e4; % The number of slots to be considered
S = [1,2,3]; % Three possible states
P = [0 1 0; 0 2/3 1/3; 1/2 1/2 0]; % Transition probability matrix
X1 = 2; % Initial state
X = MarkovChainGS(n,S,P,X1);
% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
    yc = y(I); cond_rel_freq = hist(yc,S)/LI;
    P_sim = [P_sim; cond_rel_freq];
end
P_sim
% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n
>> MarkovChain_Demo3
P_sim =
01.0000
\(0 \quad 0.6620\)
\(0.4858 \quad 0.5142\)
p_sim =
0.109
0.6657
0.2250

\section*{Review: Call-Blocking Probability}
- Call blocking probability \(\mathbf{P}_{\mathrm{b}}\) is the (long-term) proportion of calls that get blocked by the system because all channels are occupied.
- For \(\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}\) system, the (long-term) call blocking probability \(\mathrm{P}_{\mathrm{b}}\) is given by \(\mathrm{P}_{\mathrm{m}}\)
\(=\) the steady-state probability for state \(m\)
\(=\) the (long-term) proportion of time that the system will be in state \(m\)```

