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Call Blocking Probability
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Introduction
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 The English dictionary word with the most consecutive 
vowels (six) is EUOUAE. 
 It is also the longest English word consisting only of vowels

 Imagine a word with five consecutive vowels.



Introduction
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 Words with five consecutive vowels include AIEEE, 
COOEEING, MIAOUED, ZAOUIA, JUSSIEUEAN, 
ZOOEAE, ZOAEAE.



Introduction
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 Words with five consecutive vowels include AIEEE, 
COOEEING, MIAOUED, ZAOUIA, JUSSIEUEAN, 
ZOOEAE, ZOAEAE.

 Our new topic: QUEUEING THEORY.
 This is the only common word in the English language with five consecutive vowels.

 Note: The longest common word without any of the five vowels is RHYTHMS.
 There are longer rare words: SYMPHYSY, NYMPHLY, GYPSYRY, GYPSYFY, and TWYNDYLLYNGS. WPPWRMWSTE and 

GLYCYRRHIZIN are long words with very few vowels.



That Second “e”…
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 You may recall the rule for changing a verb into its “–ing” 
form from your English class… 

 If the verb ends in an “e” we remove the “e” and add “-ing”:
 browsing, causing, changing, charging, choosing, giving, having, 

hiring



Queueing Theory
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Limiting distribution
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Limiting distribution
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Limiting distribution
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nA = # 
trials in 
state A

nB = # 
trials in 
state B

Time Slot 1 0 100,000

Time Slot 2 50,000 50,000

Time Slot 3 45,000 55,000

Time Slot 4 45,500 54,500

Time Slot 5 45,450 54,550

Time Slot 6 45,455 54,545

pA = 
proportion of 
trials in state A

pB = 
proportion of 
trials in state B

Time Slot 1 0 1

Time Slot 2 0.5 0.5

Time Slot 3 0.45000 0.55000

Time Slot 4 0.45500 0.54500

Time Slot 5 0.45450 0.54550

Time Slot 6 0.45455 0.54545

1
100,000





Limiting distribution
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 Start with P 2 5⁄ 3 5⁄
1 2⁄ 1 2⁄

 Want to find 
→

.

 To do this, we first decompose 
into P VDV .
 In MATLAB, [V,D] = eig(P)

produces a diagonal matrix D of 
eigenvalues and a matrix V whose 
columns are the corresponding 
eigenvectors.

 Finally, 

→
=

→
=

→ →

lim
→

D 0 0
0 1



Review: Discrete-Time Markov Chain
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 We model the evolution in time of K by Markov chain.
 K(t) = the number of channels being occupied at time t

 Time is divided into small slots so that our analysis can be 
done in discrete time.
 This only approximate the solution. However, the answers will 

be accurate in the limit that the slot size  approaches 0.

 Discrete-time Markov chain can be specified via its state 
transition diagram or its probability transition matrix P.



Simulating a Markov Chain in MATLAB
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function X = MarkovChainGS(n,S,P,X1)
% n = the number of slots to be considered
% S = a row vector containing possible states (usually 1:N)
% P = transition probability matrix
% X1 = initial state for slot 1

N = length(S);      % Number of possible states
T = zeros(1,n);     % Preallocation
T(1) = find(S==X1); % Express the states using indices from 1 to N

% instead of the provided support S
for k = 2:n

T(k) =  randsrc(1,1,[S;P(T(k-1),:)]);
end
X = S(T);           % Express the states using the provided support
end



Simulating a Markov Chain in MATLAB
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n = 1e1;                % The number of slots to be considered
S = [1,2];              % Two possible states
P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix
X1 = 2;                 % Initial state

X = MarkovChainGS(n,S,P,X1)

% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)

I = find(x==S(k)); LI = length(I);
yc = y(I); cond_rel_freq = hist(yc,S)/LI; 
P_sim = [P_sim; cond_rel_freq];

end
P_sim

% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n

[MarkovChain_Demo1.m]



Simulating a Markov Chain in MATLAB
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>> MarkovChain_Demo1
X =

2     2     1     1     1     2     2     1     2     1
P_sim =

0.5000    0.5000
0.6000    0.4000

p_sim =
0.5000    0.5000



Exercises
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>> MarkovChain_Demo1
X =

2     1     2     1     2     1     2     1     1     1
P_sim =

0.4000    0.6000
1.0000         0

p_sim =
0.6000    0.4000

>> MarkovChain_Demo1
X =

2     2     2     2     1     2     2     2     1     1
P_sim =

0.5000    0.5000
0.2857    0.7143

p_sim =
0.3000    0.7000



Simulating a Markov Chain in MATLAB
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n = 1e4;                % The number of slots to be considered
S = [1,2];              % Two possible states
P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix
X1 = 2;                 % Initial state

X = MarkovChainGS(n,S,P,X1);

% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)

I = find(x==S(k)); LI = length(I);
yc = y(I); cond_rel_freq = hist(yc,S)/LI; 
P_sim = [P_sim; cond_rel_freq];

end
P_sim

% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n

[MarkovChain_Demo2.m]

>> MarkovChain_Demo2
P_sim =

0.4007    0.5993
0.5055    0.4945

p_sim =
0.4575    0.5425



Review: Steady-State Probabilities
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 Long-term behavior of a discrete-time Markov chain can be 
studied in terms of its steady-state (or limiting or 
equilibrium) probabilities.
 To find these probabilities, we use balance equations together 

with the fact that 

 To write down a balance equation, 
 first define a boundary,
 then consider the transfer of probabilities “in” and “out” of the 

boundary.
 To be at equilibrium, there should not be any net transfer.



Example
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Exercise
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Review: Problem Solving
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 For any question that requires you to get your answers (call 
blocking probability or steady-state probabilities) “from the 
Markov chain” or “via the Markov chain”, make sure that you
 draw the Markov chain
 set up the boundaries and write down the corresponding 

balance equation



Review: Two Interpretations
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 Two Interpretations of steady-state probabilities: 
When we let a system governed by a Markov chain evolve for 
a long time
 at a particular slot, the probability that we will find the system 

in a particular state can be approximated by its corresponding 
steady-state probability,

 considering the whole evolution up to a particular time, the 
proportion of time that the system is in a particular 
state can be approximated by its corresponding steady-state 
probability. 



Example
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n = 1e4;                % The number of slots to be considered
S = [1,2,3];            % Three possible states
P = [0 1 0; 0 2/3 1/3; 1/2 1/2 0]; % Transition probability matrix
X1 = 2;                 % Initial state

X = MarkovChainGS(n,S,P,X1);

% Approximate the transition probabilities from the simulation
P_sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)

I = find(x==S(k)); LI = length(I);
yc = y(I); cond_rel_freq = hist(yc,S)/LI; 
P_sim = [P_sim; cond_rel_freq];

end
P_sim

% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n >> MarkovChain_Demo3

P_sim =
0    1.0000         0
0    0.6620    0.3380

0.4858    0.5142         0
p_sim =

0.1093    0.6657    0.2250



Review: Call–Blocking Probability
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 Call blocking probability Pb is the (long-term) 
proportion of calls that get blocked by the system because all 
channels are occupied.

 For M/M/m/m system, the (long-term) call blocking 
probability Pb is given by Pm

= the steady-state probability for state m
= the (long-term) proportion of time 

that the system will be in state m


