ECS455 Chapter 3 Call Blocking Probability

Dr.Prapun Suksompong prapun.com/ecs455 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30

Introduction

- The English dictionary word with the most consecutive vowels (six) is **EUOUAE**.
 - It is also the longest English word consisting only of vowels

• Imagine a word with **five** consecutive vowels.

Introduction

• Words with five consecutive vowels include **AIEEE**, C**OOEEI**NG, MIAOUED, ZAOUIA, JUSSIEUEAN, Z**OOEAE**, Z**OAEAE**.

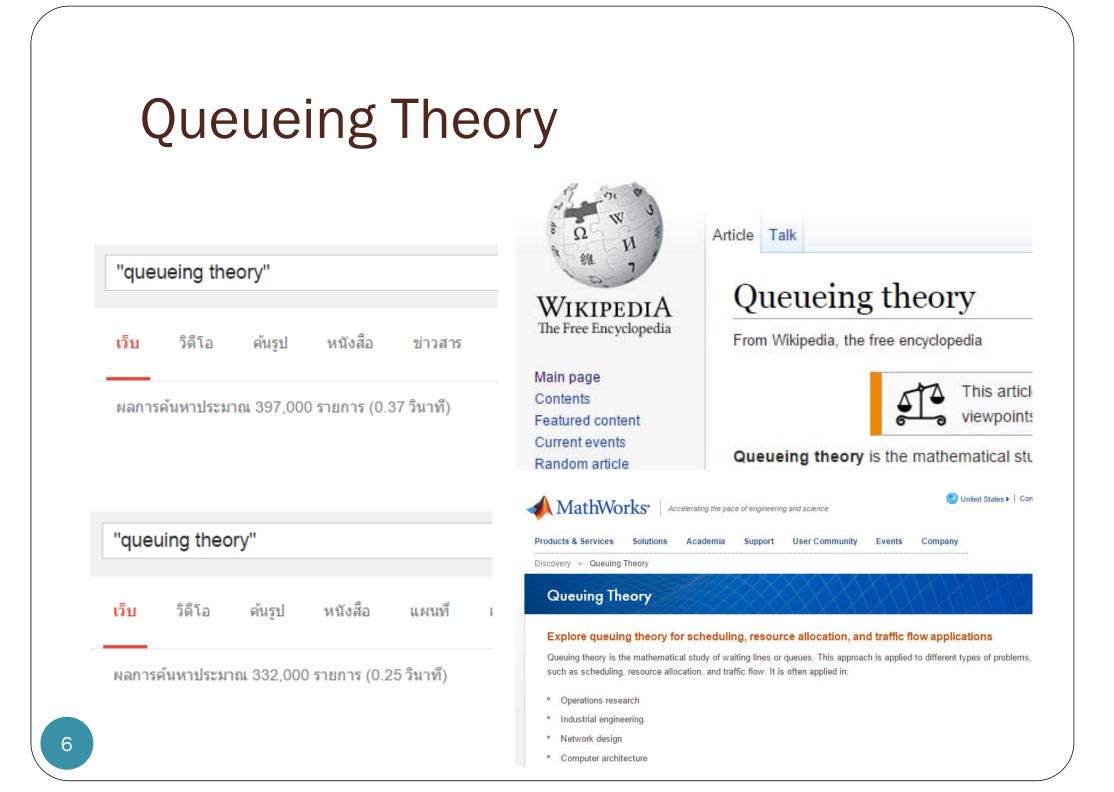
Introduction

• Words with five consecutive vowels include **AIEEE**, C**OOEEI**NG, MIAOUED, ZAOUIA, JUSSIEUEAN, Z**OOEAE**, Z**OAEAE**.

- Our new topic: Q**UEUEI**NG THEORY.
 - This is the only common word in the English language with five consecutive vowels.
- Note: The longest common word without any of the five vowels is RHYTHMS.
 - There are longer rare words: SYMPHYSY, NYMPHLY, GYPSYRY, GYPSYFY, and TWYNDYLLYNGS. WPPWRMWSTE and GLYCYRRHIZIN are long words with very few vowels.

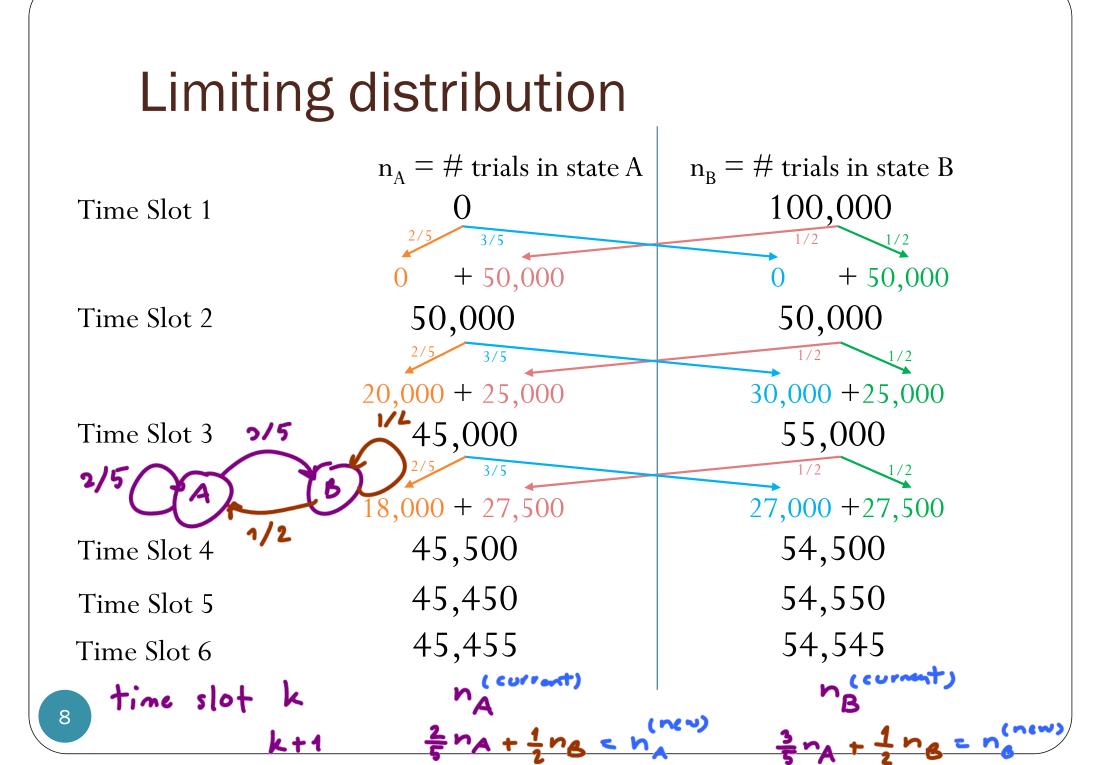
That Second "e"...

- You may recall the rule for changing a verb into its "—ing" form from your English class...
- If the verb ends in an "e" we remove the "e" and add "-ing":
 - browsing, causing, changing, charging, choosing, giving, having, hiring



Limiting distribution

>> $P = [2/5 \ 3/5; \ 1/2 \ 1/2]$ P =0.4000 0.6000 0.5000 0.5000 (1)>> n1 = [1e4 9e4] >> n1 = [0 1e5]n n1 = n1 = 90000 10000 100000 0 >> n2 = n1*P>> n2 = n1*Pn2 = n2 = 49000 51000 50000 50000 >> n3 = n2*P >> n3 = n2*Pn3 = n3 = 45100 54900 45000 55000 = n3*P>> n4 = n3*Pn4 = 45490 54510 45500 54500 >> n5 = n4*P>> n5 = n4*Pn5 = n5 = 45451 54549 45450 54550 >> n6 = n5*P>> n6 = n5*Pn6 = n6 = 1.0e+04 * 45455 54545 4.5455 5.4545



Limiting distribution

[na)

>> $P = [2/5 \ 3/5; \ 1/2 \ 1/2]$ $\mathbf{P} =$ 0.4000 0.6000 0.5000 0.5000 >> n1 = [0 1e5]n1 =100000 0 >> $n^2 = n^{1*P}$ n2 = 50000 50000 >> n3 = n2*Pn3 = 45000 55000 >> n4 = n3*Pn4 = 45500 54500 >> n5 = n4*Pn5 = 45450 54550 >> n6 = n5*Pn6 = 45455 54545

>> P = [2/5 3/5; 1/2 1/2]P = 0.4000 0.6000 0.5000 0.5000 >> P^2 ans = 0.4600 0.5400 0.4500 0.5500 >> P^3 ans = 0.4540 0.5460 0.5450 0.4550 >> P^4 ans = 0.4546 0.5454 0.4545 0.5455 >> P^5 ans = 0.4545 0.5455 0.4546 0.5455 >> P^6 ans = 0.4545 0.5455 0.4545 0.5455

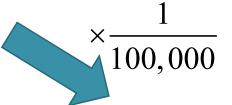
 $] = [n_A^{(cor)}]$

(new]

ncors

Limiting distribution

	n _A = # trials in state A	n _B = # trials in state B
Time Slot 1	0	100,000
Time Slot 2	50,000	50,000
Time Slot 3	45,000	55,000
Time Slot 4	45,500	54,500
Time Slot 5	45,450	54,550
Time Slot 6	45,455	54,545



	p _A = proportion of trials in state A	p _B = proportion of trials in state B
Time Slot 1	0	1
Time Slot 2	0.5	0.5
Time Slot 3	0.45000	0.55000
Time Slot 4	0.45500	0.54500
Time Slot 5	0.45450	0.54550
Time Slot 6	0.45455	0.54545

(م م) [^{5/11} ^{6/11}] : [م مر] Limiting distributio	$P^{2} = \sqrt{DV} \sqrt{V} DV^{-1} = \sqrt{D^{2}} \sqrt{V}$ $P^{3} = \sqrt{D^{2}} \sqrt{V} DV^{-1} = \sqrt{D^{3}} \sqrt{V}$
• Start with $P = \begin{bmatrix} 2/5 & 3/5 \\ 1/2 & 1/2 \end{bmatrix}$ • Want to find $\lim_{n \to \infty} P^n$. • To do this, we first decompose P	<pre>>> P = sym([2/5 3/5; 1/2 1/2]) P = [2/5, 3/5]</pre>
 It do this, we first decompose I into P = VDV⁻¹. In MATLAB, [V,D] = eig(P) produces a diagonal matrix D of eigenvalues and a matrix V whose columns are the corresponding eigenvectors. 	$\begin{bmatrix} -6/5, 1 \\ 1, 1 \end{bmatrix}$ $D = \begin{bmatrix} -1/10, 0 \\ 0, 1 \end{bmatrix} \implies \lim_{n \to \infty} D^n = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $>> V*D*(V^{(-1)}) \implies Dinf = sym([0,0;0,1])$ $ans = \begin{bmatrix} 2/5, 3/5 \\ 1/2, 1/2 \end{bmatrix} = \begin{bmatrix} 0, 0 \\ 0 \end{bmatrix}$ $= \begin{bmatrix} 0, 0 \\ 0 \end{bmatrix}$
• Finally, $\lim_{n \to \infty} \mathbf{P}^n = \lim_{n \to \infty} (\mathbf{V}\mathbf{D}\mathbf{V}^{-1})^n = \lim_{n \to \infty} \mathbf{P}^n$	$\prod_{n=1}^{[5/11, 6/11]} VD^{n}V^{-1} = V\left(\lim_{n\to\infty} D^{n}\right)V^{-1}$

Review: Discrete-Time Markov Chain

- We model the evolution in time of *K* by Markov chain.
 - K(t) = the number of channels being occupied at time t
- Time is divided into small slots so that our analysis can be done in discrete time.
 - This only approximate the solution. However, the answers will be accurate in the limit that the slot size δ approaches 0.
- Discrete-time Markov chain can be specified via its state transition diagram or its probability transition matrix P.

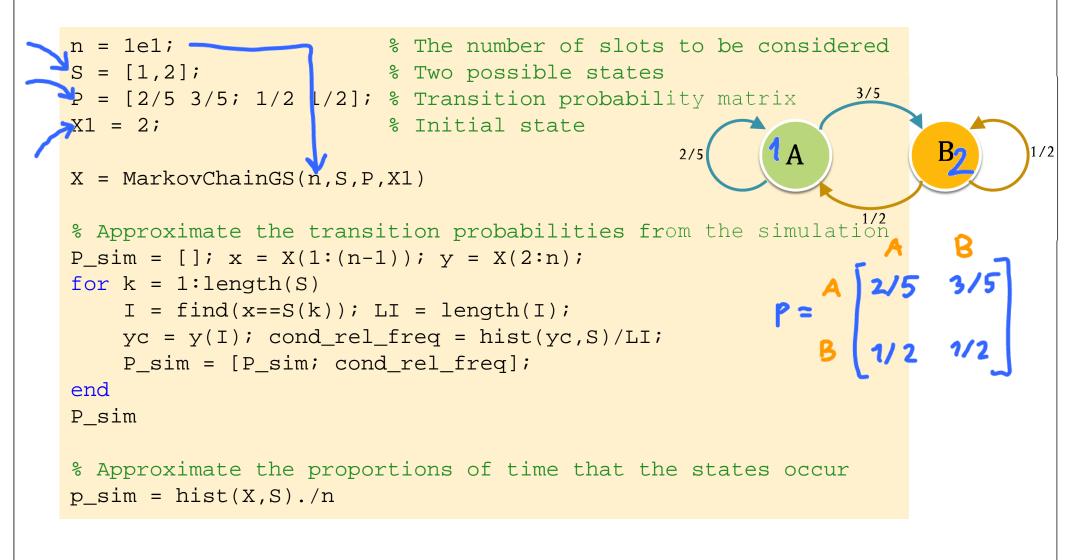
 $P = \begin{bmatrix} 0 & 3 & 0 & 0 & -1 \\ 1 & -\lambda & 5 & \lambda \\ 1 & -\lambda & 0 & 1 & -1 \end{bmatrix}$

22

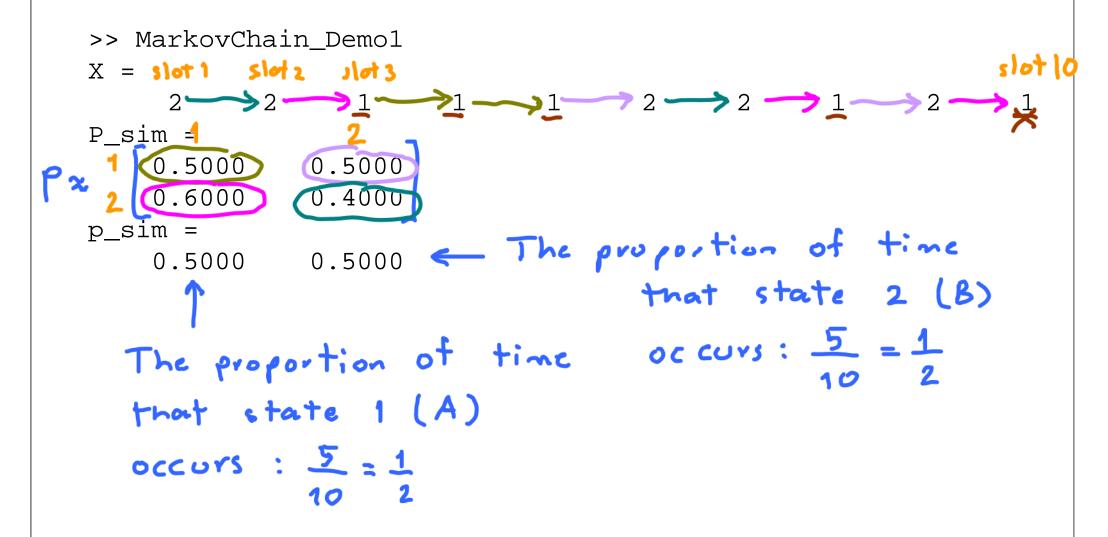
1-25

```
function X = MarkovChainGS(n,S,P,X1)
% n = the number of slots to be considered
% S = a row vector containing possible states (usually 1:N)
% P = transition probability matrix
% X1 = initial state for slot 1
```

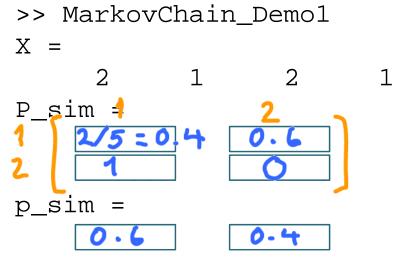
```
N = length(S); % Number of possible states
T = zeros(1,n); % Preallocation
T(1) = find(S==X1); % Express the states using indices from 1 to N
% instead of the provided support S
for k = 2:n
T(k) = randsrc(1,1,[S;P(T(k-1),:)]);
end
X = S(T); % Express the states using the provided support
end
```

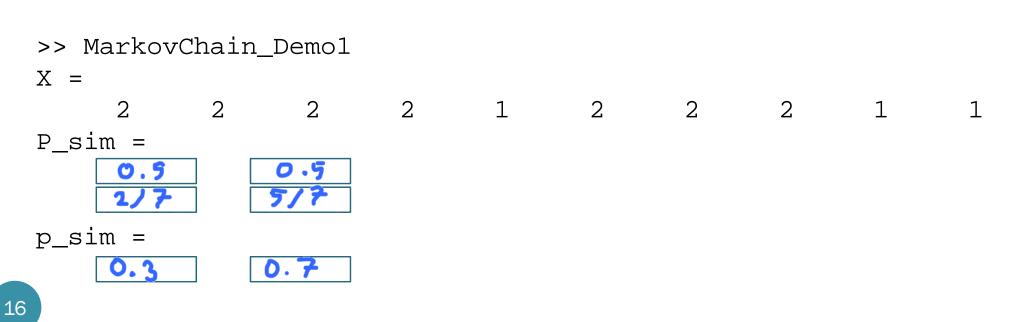


[MarkovChain_Demo1.m]



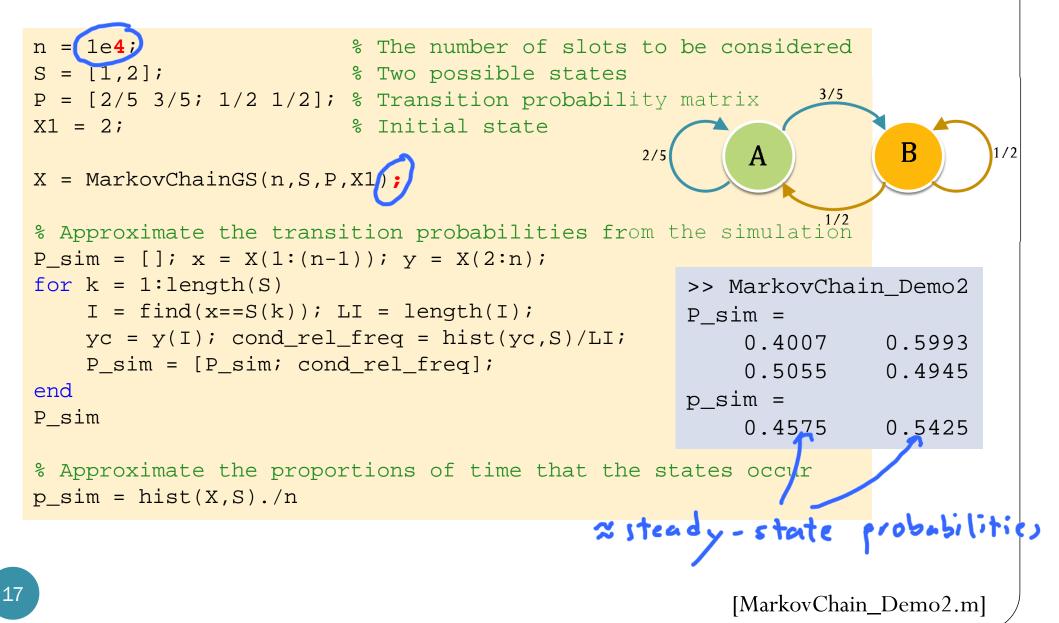
Exercises





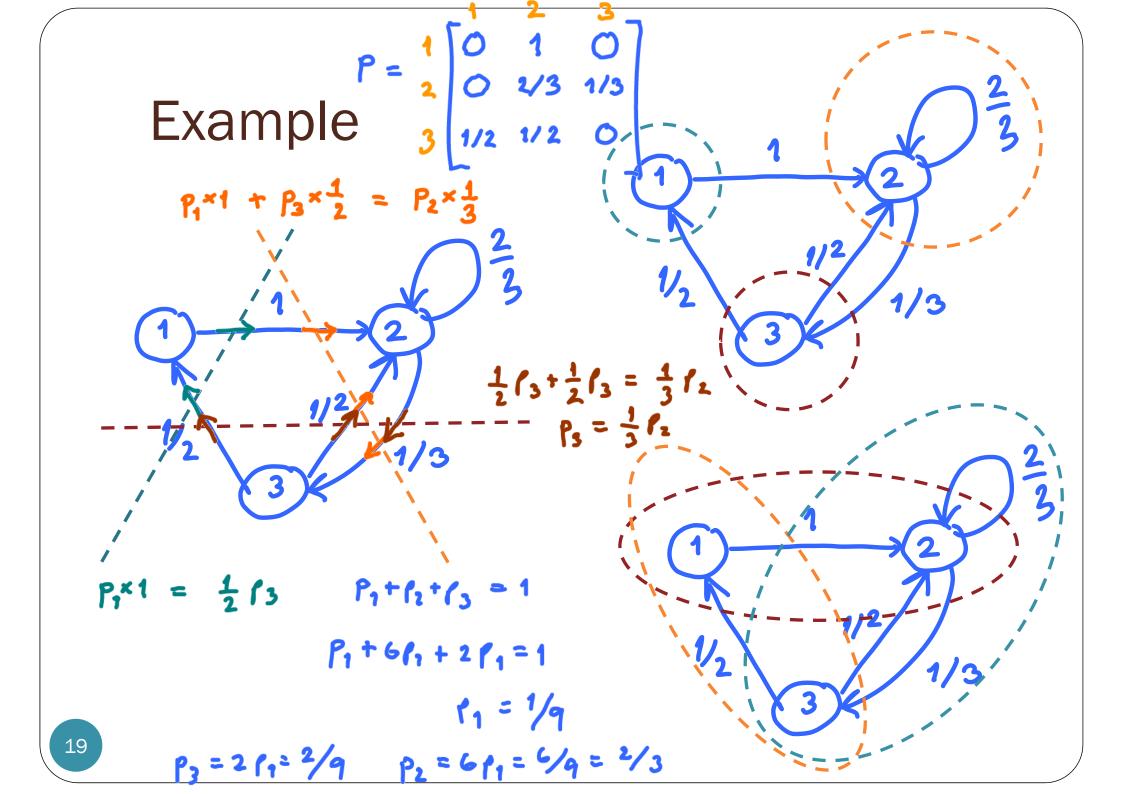
2 1 2 1 1 1

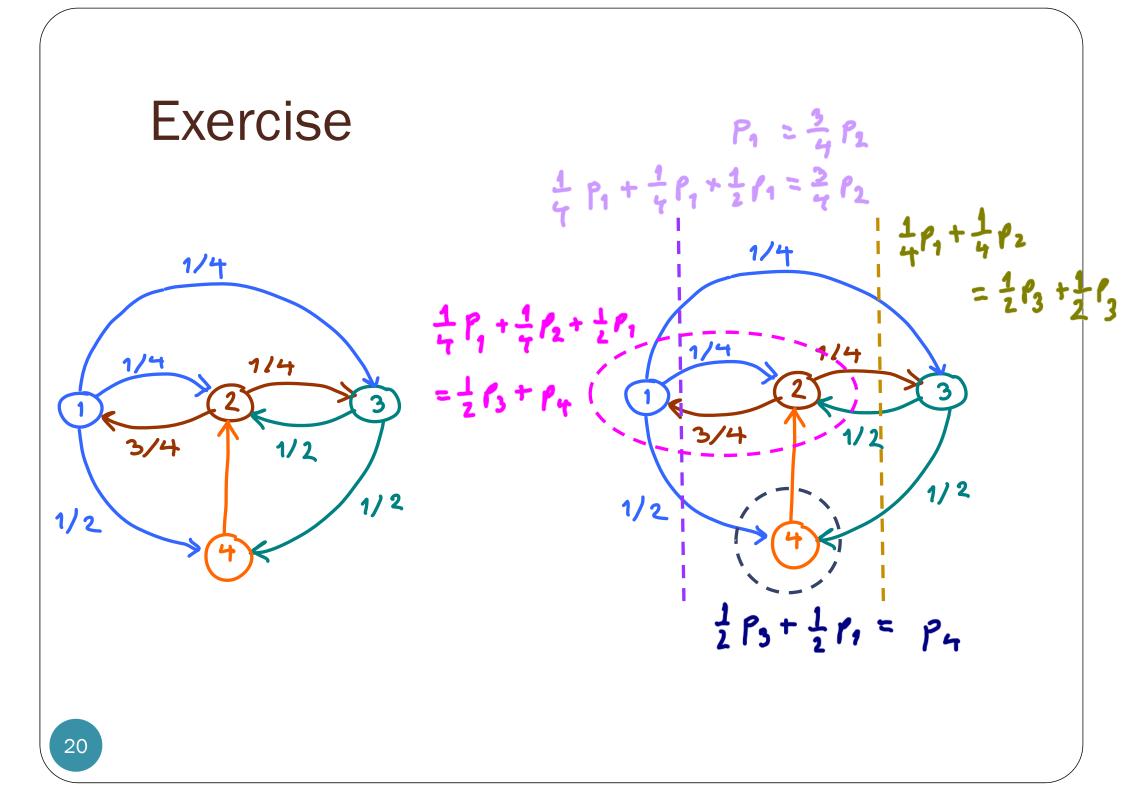
There are 5 transitions from state 1



Review: Steady-State Probabilities

- Long-term behavior of a discrete-time Markov chain can be studied in terms of its **steady-state** (or limiting or equilibrium) probabilities.
 - To find these probabilities, we use balance equations together with the fact that
- To write down a **balance equation**,
 - first define a boundary,
 - then consider the transfer of probabilities "in" and "out" of the boundary.
 - To be at equilibrium, there should not be any net transfer.





Review: Problem Solving

- For any question that requires you to get your answers (call blocking probability or steady-state probabilities) "from the Markov chain" or "via the Markov chain", make sure that you
 - draw the Markov chain
 - set up the boundaries and write down the corresponding balance equations

Review: Two Interpretations

- Two Interpretations of steady-state probabilities: When we let a system governed by a Markov chain evolve for a long time
 - at a particular slot, the probability that we will find the system in a particular state can be approximated by its corresponding steady-state probability,
 - considering the whole evolution up to a particular time, the proportion of time that the system is in a particular state can be approximated by its corresponding steady-state probability.

Example

```
n = 1e4;
               % The number of slots to be considered
S = [1,2,3]; % Three possible states
P = [0 1 0; 0 2/3 1/3; 1/2 1/2 0]; % Transition probability matrix
                % Initial state
X1 = 2i
X = MarkovChainGS(n,S,P,X1);
% Approximate the transition probabilities from the simulation
P sim = []; x = X(1:(n-1)); y = X(2:n);
for k = 1:length(S)
    I = find(x==S(k)); LI = length(I);
   yc = y(I); cond_rel_freq = hist(yc,S)/LI;
   P sim = [P sim; cond rel freq];
end
P sim
% Approximate the proportions of time that the states occur
p sim = hist(X,S)./n
```

>> MarkovChain_Demo3				
P_sim =				
0	1.0000	0		
0	0.6620	0.3380		
0.4858	0.5142	0		
p_sim =				
0.1093	0.6657	0.2250		

Review: Call-Blocking Probability

- Call blocking probability P_b is the (long-term) proportion of calls that get blocked by the system because all channels are occupied.
- For M/M/m/m system, the (long-term) call blocking probability P_b is given by P_m
 - = the steady-state probability for state m
 - = the (long-term) proportion of time
 that the system will be in state m