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Introduction

e The English dictionary word with the most consecutive

vowels (six) is EUOUAE.

It is also the longest English word consisting only of vowels

® Imagine a word with five consecutive vowels.
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Introduction

® Words with five consecutive vowels include AIEEE,

COOEEING, MIAOUED, ZAOUIA, JUSSIEUEAN,
ZOOEAE, ZOAEAE.




Introduction

® Words with five consecutive vowels include AIEEE,
COOEEING, MIAOUED, ZAOUIA, JUSSIEUEAN,
Z0OOEAE, ZOAEAE.

® Our new topic: QUEUEING THEORY.

This is the only common word in the English language with five consecutive vowels.

® Note: The longest common word without any of the five vowels is RHYTHMS.

There are longer rare words: SYMPHYSY, NYMPHLY, GYPSYRY, GYPSYFY, and TWYNDYLLYNGS. WPPWRMWSTE and
GLYCYRRHIZIN are long words with very few vowels.
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That Second “e”...

® You may recall the rule for changing a verb into its “—ing”
form from your English class. ..
¢ [f the verb ends in an “e” we remove the “e” and add “—ing”:

browsing, causing, changing, charging, choosing, giving, having,

hiring




Queueing Theory

"gueueing theory"

J81a gl wilada  AYC AT

Han sAulszana 397,000 s1an1s (0.37 Juw)

"queuing theory"

Jata fiusgil wileda WHUN

Han1sAuMlszanm 332,000 5180175 (0.25 Jun)

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article

4\ MathWorks'

Products & Services Solutions

Article Talk

Queueing theory

From Wikipedia, the free encyclopedia

Queueing theory is the mathematical stu

This articl
viewpoint:

&) United States » | Con

Accelerating the pace of engineering and science

Academia Support User Community Events Company

Discovery = Queuing Theory

Quevuing Theory
|

Explore queuing theory for scheduling, resource allocation, and traffic flow applications

Queuing theory is the mathematical study of waiting lines or queues. This approach is applied to different types of problems,
such as scheduling, resource allocation, and traffic flow_ It is often applied in:

Operations research
Industrial engineering
Network design

* Computer architecture




Limiting distribution
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Limiting distribution
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Limiting distribution
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Limiting distribution
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e Start with P = ﬁ;g i;g
e Want to find lim P™.
n— oo

* To do this, we tirst decompose P
into P = VDV,
In MATLAB, [V,D] = eig(P)

produces a diagonal matrix D of

eigenvalues and a matrix V whose

columns are the corresponding

eigenvectors.

® Finally,
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Review: Discrete-Time Markov Chain

® We model the evolution in time of K by Markov chain.

K(t) = the number of channels being occupied at time ¢

® Time is divided into small slots so that our analysis can be
done in discrete time.

This only approximate the solution. However, the answers will

be accurate in the limit that the)SIoESiZEI0approaches o

® Discrete-time Markov chain can be specified via its state
transition diagram or its probability transition matrix P.
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Simulating a Markov Chain in MATLAB

function X = MarkovChainGS(n,S,P,X1)

% n = the number of slots to be considered
% S = a row vector containing possible states (usually 1:N)
% P = transition probability matrix

% X1 = 1nitial state for slot 1

N length(S); % Number of possible states

T = zeros(1,n); % Preallocation

T(1) = Find(S==X1); % Express the states using indices from 1 to N
% mInstead of the provided support S

for k = 2:n
T(k) = randsrc(1,1,[S;P(T(k-1),D)HD);
end
X = S(1); % Express the states using the provided support
end
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Simulating a Markov Chain in MATLAB

lel; % The number of slots to be considered
[1,2]; % Two possible states
[2/5 3/5; 1/2 ﬁ/Z]; % Transition probability matrix //;ii\\‘

//ax1 = 2; % Initial state
* 2/5 1A
X = MarkovChainGS(n,S,P,X1) ‘
172

% Approximate the transition probabilities from the simulation

n
S

1/2

52

P_sim = []; x = X(1:(n-1)); y = X(2:n); - o
for k = 1:length(S) | 2/5 /5
I = find(x==S(k)); LI = length(l); P=
yc = y(1); cond rel freq = hist(yc,S)/LI; 22
P_sim = [P_sim; cond_rel_freq]; L‘UZ -
end
P sim

% Approximate the proportions of time that the states occur
p_sim = hist(X,S)./n

@ [MarkovChain_Demol m]J




Simulating a Markov Chain in MATLAB
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Exercises
>> MarkovChain_Demol
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Simulating a Markov Chain in MATLAB

n : % The number of slots to be considered

S = [1,2]; % Two possible states

P = [2/5 3/5; 1/2 1/2]; % Transition probability matrix e

X1 = N

1/2

>

1 = 2; % Initial state
2/5 A B
= MarkovChainGS(n,S, P,Xl@ /- |

- - - = . - 1/2
% Approximate the transition probabilities from the simulation

P sim = []; x = X(A:(n-1)); y = X(2:n);

for k = 1:length(S) >> MarkovChain_Demo?2
1 = find(x==S(k)); LI = length(l); P sim =
yc = y(1); cond rel freq = hist(yc,S)/LI; 0.4007 0.5993
P_sim = [P_sim; cond_rel_freq]; 0.5055 0.4945

end_ p_sim =

= 0.4575  0.5425

% Approximate the proportions of time that the states occyr
p_sim = hist(X,S)./n

A~ !Teac‘), - state r"’\"“-’.’\.’““
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Review: Steady-State Probabilities

® Long-term behavior of a discrete-time Markov chain can be
studied in terms of its steady-state (or limiting or
equilibrium) probabilities.
To find these probabilities, we use balance equations together
with the fact that
* To write down a balance equation,
first define a boundary,

then consider the transfer of probabilities “in” and “out” of the

boundary.

To be at equilibrium, there should not be any net transfer.







Exercise




Review: Problem Solving

® For any question that requires you to get your answers (call

blocking probability or steady-state probabilities) “from the
Markewichainjor fvia'the'Markov'chain”, make sure that you

draw the Markov chain

set up the boundaries and write down the corresponding

balance equations




Review: Two Interpretations

* Two Interpretations of steady—state probabilities:
When we let a system governed by a Markov chain evolve for

a long time

at a particular slot, the probability that we will find the system
in a particular state can be approximated by its corresponding

steady-state probability,

considering the whole evolution up to a particular time, the
proportion of time that the system 1S 1n a particular
state can be approximated by its corresponding steady—state

probability.




Example

n = le4; % The number of slots to be considered

S =11,2,3]; % Three possible states

P=]J010; 02/3 1/3; 1/2 1/2 0]; % Transition probability matrix
X1 = 2; % Initial state

X = MarkovChainGS(n,S,P,X1);

% Approximate the transition probabilities from the simulation

P sim = []; x = X(@A:(n-1)); y = X(2:n);
for k = 1:length(S)
I = find(x==S(k)); LI = length(l);
yc = y(1); cond rel freq = hist(yc,S)/LI1;
P sim = [P_sim; cond rel freq];
end
P sim

% Approximate the proportions of time that the states occur

p_sim = hist(X,S)./n >> MarkovChain_Demo3
P sim =
0] 1.0000 0]
0 0.6620 0.3380
0.4858 0.5142 0

\\\ 0.1093 0.6657 0.2250 ///




Review: Call-Blocking Probability

* Call blocking probability Py is the (long-term)
proportion of calls that get blocked by the system because all

channels are occupied.
® For M/M/m/m system, the (long-term) call blocking
probability P, is given by P

= the steady-state probability for state m
= the (long-term) proportion of time

that the system will be in state m




